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Vesicle distribution in basalt lava flow units in the Mesozoic
rift basins of northeast China and its application in gas
reservoir prediction

Jian Yi, Pujun Wang, Youfeng Gao, Ruishi Yao, Ranlei Zhao, and Chongyang Chen

Abstract: The Mesozoic rift basins of northeast China are characterized by a significant proportion of basalt due to the progressive
emplacement of basalt lava flows. The objective of this study was to construct vesicle distribution models of the basalt lava flow units,
including conceptual geological models and thickness models, to understand the architecture of the basalt and the gas reservoir
distribution. The conceptual geological models were constructed based on the characteristics of outcropping basalt lava flows, with
supplemental seismic data used to extrapolate the lateral extents of large-scale basalt lava flows. The thickness models were con-
structed using data on the thicknesses of basalt lava flow units and vesicle zones. These data were obtained from 27 units in outcrop
and 204 units interpreted from well logs in the basin. The conceptual geological models revealed that the shapes of the basalt lava flow
units change from braided to tabular with increasing thickness and that their inner structures can be divided into three vesicle zones:
the top vesicle zone, the massive core zone, and the base vesicle zone. The thickness models revealed that trends in the thickness of
the top vesicle zone relative to the thickness of the basalt lava flow unit can be expressed using a piecewise function that can be
separated into a linear function and a logarithmic function. Similarly, trends in the thickness of the massive core zone and the base
vesicle zone relative to the basalt lava flow unit thickness can be expressed by a piecewise linear function. Vesicle distribution models
provide an effective means of determining the proportion and distribution of vesicle zones in basalt with limited borehole data. We
also constructed a reservoir model based on our vesicle distribution models, and this model revealed that suitable petroleum
reservoirs are primarily located in the thinner braided lava flows.

Résumé : Les bassins d’effondrement (Mésozoique) du nord-est de la Chine sont caractérisés par une proportion importante de
basaltes en raison de la mise en place progressive de coulées de lave basaltique. L’objet de la présente étude est de construire des
modeles de distribution des vacuoles des unités de coulées de lave basaltique, incluant des modeéles conceptuels de la géologie et de
I’épaisseur, afin de comprendre I'architecture des basaltes et la distribution des réservoirs de gaz. Les modéles géologiques conceptuels
ont été construits en se basant sur les caractéristiques des affleurements de coulées de lave basaltique; des données sismiques
additionnelles ont servi a extrapoler les étendues latérales des coulées de lave basaltique a grande échelle. Les modeles d’épaisseur ont
été construits en utilisant des données sur les épaisseurs des unités de coulées de lave basaltique et des zones de vacuoles. Ces données
ont été obtenues de 27 unités en affleurement et de 204 unités interprétées a partir de diagraphies de puits dans le bassin. Les modeéles
géologiques conceptuels révelent que les formes des unités de coulées de lave basaltique changent d’anastomosées a tabulaires en
fonction de l'augmentation de I'épaisseur et que leur structure interne peut étre divisée en trois zones vacuolaires : une zone
vacuolaire supérieure, une zone massive centrale et une zone vacuolaire basale. Les modéles d’épaisseur révelent que les tendances
dans I’épaisseur de la zone vacuolaire supérieure, par rapport a I'épaisseur de I'unité de coulée de lave basaltique, peuvent étre
exprimées au moyen d’une fonction par morceaux, laquelle peut étre séparée en une fonction linéaire et une fonction logarithmique.
De méme, les tendances dans 1’épaisseur de la zone massive centrale et dans la zone vacuolaire basale, par rapport a I’épaisseur de
I'unité de coulée de lave basaltique, peuvent étre exprimées par une fonction linéaire par morceaux. Les modéles de distribution des
vacuoles fournissent un moyen efficace de déterminer la proportion et la distribution des zones de vacuoles dans les basaltes dont les
données de forage sont limitées. Nous avons aussi construit un modéle de réservoir basé sur nos modeles de distribution des vacuoles
et ce modele a révélé que des réservoirs pétroliféeres adéquats sont principalement situés dans les coulées de lave anastomosées plus
minces. [Traduit par la Rédaction]

Introduction

Volcanic successions in the rift basins of northeast China have
recently become a focus of geological research owing to the dis-
covery of significant volcanic gas reservoirs in this region (Wang
and Chen 2015). In these basins, basalt comprises a large propor-
tion of the total volcanic succession and represents an important

ervoirs in these basins, demonstrating the importance of detailed
basalt vesicle distribution estimates.

Previous studies of volcanic rocks in the basins of northeast
China have been primarily limited to the description of lithology,
facies, and reservoir volume (Feng et al. 2014). Elsewhere, Walker
(1971) employed “lava flow units” as “fundamental building blocks”

type of volcanic petroleum reservoir (Shan et al. 2012). Vesicles are
the primary petroleum reservoir volume in basalt in this region
(Huang et al. 2010b). Therefore, basalts function as petroleum res-

to understanding the emplacement of continental flood basalts
(CFBs), which are typically composed of stacked basalt lava flow
units. This approach has been extensively applied and refined in
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Fig. 1. Overview map of the study area in northern China. Locations of the outcrops and grabens used in this study are marked. Boreholes are

indicated in Fig. 3. J,tm, Tamulangou Formation.
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many studies of CFBs throughout the world, including individual
lava flow units (Lockwood and Lipan 1980; Planke et al. 1999b;
Waichel et al. 2006), facies architecture and emplacement (Bull
and McPhie 2006; Jerram et al. 2009; Vye-Brown et al. 2013), and
seismic-scale facies (Planke and Cambray 1998; Planke et al. 1999a,
2000; Calves et al. 2011; Jackson 2012). Therefore, basalt lava flow
units represent a solid foundation for research on large-scale CFBs
(Single and Jerram 2004; Waichel et al. 2012). Lava flow units also
play a major role in vesicle distribution in basalt (Andersen and
Boldreel 2009). Vesicles develop independently and accumulate to
form vesicle zones in individual lava flow units (Cashman and
Kauahikaua 1997). Complex vesicle distributions in CFBs are
formed by the stacked flow units (Waichel et al. 2012). However,
only few studies have quantitatively described the vesicle distri-
bution in basalt lava flow units. For example, Single and Jerram
(2004) investigated the thicknesses of vesicle zones in basalt lava
flow units in the Skye lava field of tertiary igneous rock in Great
Britain. The goals of our study are to complement previous studies
regarding the distribution of vesicle zones in basalts by adding
data from northeast China to the database and to present models
that predict vesicle distributions.

To explore the vesicle distribution in basalt lava flow units in
the Mesozoic continental rift basins of northeast China, we se-
lected the Songliao and Hailaer basins as representative study
areas. Several deep boreholes and three-dimensional seismic sur-

veys exist in the Songliao Basin, and the basalt at the margin of
the Hailaer Basin is well exposed in outcrop. Vesicle distribution
models were constructed by describing and measuring vesicle
zones along profiles through the basalt lava flow units in the out-
crop, and similar data were obtained from cores and petrophysical
logs from boreholes. The interpretation of basin seismic data pro-
vided data on the lateral extent of basalts in the Songliao Basin.

Geological setting

The Songliao and Hailaer basins (Fig. 1) are situated in north-
eastern China between the North China plate and the Siberian
plate and formed on continental crust (Feng 2008; Liu et al. 2010).
Two important collisional belts exist in this area: the suturing of
the Xilamulun belt in the south led the formation of the basement
of the Songliao Basin (Wang and Fan 1997); and the Mongolia—
Okhotsk belt in the north formed by the closure of the Mongolia-
Okhotsk Ocean (Kravchinsky et al. 2002; Metelkin et al. 2007)
(Fig. 1). The latter belt has the closest spatial and temporal rela-
tionships with the development and volcanism of the Songliao
and Hailaer basins (Wang et al. 2002; Cai et al. 2010).

In the early Mesozoic, the Songliao Basin was a continental rift
basin that was controlled by both the closure of the Mongolia—Ok-
hotsk Ocean and the subduction of the Pacific plate (Wang et al.
2007). In this period, a series of independent grabens formed in the
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Fig. 2. Erosional escarpments of the Tamulangou Formation (J,tm) in Manchuria, northeast China (refer to Fig. 1 for location). A total of
27 basalt lava flow units were analyzed, and the measured parameters included the thicknesses of the lava flow units and the vesicle zones.
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Songliao Basin (Feng et al. 2010). This basin subsequently entered the
depression and structural inversion stage (Feng et al. 2011). The Hai-
laer Basin has a similar evolutionary history; however, the fault-
depression transition times differed (Chen et al. 2007).

Three tectonostratigraphic sequences, which are separated by
regional unconformities, developed in the Songliao Basin (Wang
et al. 2007) and the Hailaer Basin (Zhang et al. 1994): (i) the fault-
subsidence sequence; (ii) the depression sequence; and (iii) the
structural inversion sequence. Volcanic successions developed
during the fault-subsidence sequences of these two basins. In the
Songliao Basin, volcanic successions developed in the Upper
Jurassic Huoshiling Formation and in the Lower Cretaceous Ying
Cheng Formation (Cheng et al. 2014). The Ying Cheng Formation is
divided into three members: the first member is primarily com-
posed of rhyolite and pyroclastic; the second member is derived
from sedimentary sequences; and the third member primarily
consists of basalt and pyroclastic deposits (Jia et al. 2007). In the
Hailaer Basin, the volcanic sequences primarily developed in the
Jurassic - Lower Cretaceous Xinganling Group in the fault-
subsidence sequence (Chen et al. 2007). The Middle Jurassic
Tamulangou Formation in the Xinganling Group, which pri-
marily comprises olivine basalt, pyroxene basalt, and basaltic
andesite (Zhao et al. 2011), was uplifted and exposed at the margin of
the Hailaer Basin. This exhumation and related long-term water ero-
sion resulted in a representative three-dimensional basalt outcrop at
Hulun Lake in Manchuria that was employed in this study (Fig. 1).

Terminology

This paper uses the following terms: (i) “Eruptive unconformity
boundaries”: unconformity interfaces in volcanic rocks that
formed during the short intervals of eruptions (De Rita et al. 1997).

These boundaries can be identified by lithological and textural
aspects, such as the presence of a cooling crust, a’a lava surface, or
pahoehoe lava surface, etc. (Lockwood and Hazlett 2010). (ii) “Lava
flow unit”: a separate cooling unit that has a top that cooled
significantly and solidified before another flow was superposed
on it (Walker 1971; Self et al. 1997) or a lava flow unit that is
enclosed by eruptive unconformity boundaries (Tang el al. 2015).
(iii) “Braided lava flow unit”: a thin, braided, channel-like lava flow
unit (Jerram 2002). (iv) “Tabular lava flow unit”: a thick, layer-like
lava flow unit (Jerram 2002). (v) “Vesicle zones”: based on the
shapes and numbers of vesicles, the structure of a lava flow unit
can be divided into three zones (Aubele et al. 1988). The “top
vesicle zone” consists of the upper crust of a basalt lava flow unit,
which is highly vesicular; the “massive core zone” includes the
dense flow interior with few vesicles; and the “base vesicle zone”
comprises the lower crust, which is characterized by the develop-
ment of a few pipe vesicles (Cashman and Kauahikaua 1997; Self
et al. 1998). According to outcrop observations, the top vesicle
zone can be subdivided into the “upper layer” and the “lower
layer”. These features are described in the section “Basalt lava flow
units in outcrop”.

Database and methods

Both outcrop and borehole data were incorporated into the
vesicle distribution models. The basalt of the Tamulangou Forma-
tion is exposed on the shores of Hulun Lake in continuous ero-
sional escarpments that are approximately 1.9 km long. We
measured profiles through 27 units to determine the thicknesses
of the lava flow units and their vesicle zones (Fig. 2).

As a complement to the outcrop data, 204 basalt lava flow units
were identified from a total of 116 m of core and 1885 m of petro-
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Fig. 3. Borehole data and seismic sections used in this study. (a) Geology of columnar sections in the fault-subsidence sequence of the
Songliao Basin, including the Upper Jurassic Huoshiling Formation (J;h), the Lower Cretaceous Shahezi Formation (K;s), and the Lower
Cretaceous Yingcheng Formation (K,y). The basalt analyzed in this study is the third member of the Yingcheng Formation. (b) Buried volcanic
grabens in the Songliao Basin. (c) Locations of boreholes and seismic sections in the Xujiaweizi graben. (d) Locations of boreholes in the
Changling graben. Numbers in the isopachous lines represent the thicknesses of the volcanic rocks in metres. Bas., basin; Strat., stratigraphic.
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physical log data from 23 deep boreholes. These boreholes were
drilled in the basalt of the third member of the Yingcheng Forma-
tion in the Xujiaweizi and Changling grabens of the Songliao
Basin (Fig. 3). The thicknesses and vesicle distributions of the
basalt lava flow units were determined. Additionally, seismic sec-
tions proved to be suitable for interpreting thick lava flow units,
and the seismic data were used to determine the lateral extent of
the tabular lava flow units in this basin (Fig. 3).

An image analysis was employed to count the surface porosity
of the outcropping basalt (data are used in figures discussed in the
subsection “Conceptual geological models”). Specimens were ob-
tained from high-resolution photographs of the outcrops. The
photographs were taken systematically at 50 cm intervals from
the top to the base of flow units. The surface porosity was mea-
sured using the computer software CoreDBMS, which was de-
signed by the Daqing Oilfield Company (Daqing, China). Porosimeter
porosity and permeability measurements (data are used in the
figure discussed in the subsection “Permeability of basalt reser-
voirs”) were performed on a total of 223 samples from the 23 deep
boreholes in the Songliao Basin (Figs. 3c, 3d), and one scientific
shallow borehole Y3D1 at the southeast margin of the Songliao

Basin (Fig. 3b), and the outcrop at the margin of Manchuria (Fig. 1).
These analyses were performed in the laboratories of Jilin Univer-
sity and the Daqing Oilfield Company.

Basalt lava flow units in outcrop

Two representative escarpments were selected for this study, and
their geological characteristics, including the shapes, inner struc-
tures, and stacking patterns of the braided and tabular lava flow
units, were assessed to develop conceptual geological models. These
data enabled the creation of identification standards for vesicle
zones to ensure that the data from the 27 lava flow units assessed in
the field had consistent benchmarks to enable clear identification.

Braided lava flow units

Figure 4 illustrates the characteristics of braided lava flow units.
In the study escarpment, seven basalt lava flow units with thick-
nesses of 4-7 m were identified based on eruptive unconformity
boundaries (Figs. 4a, 4b). These eruptive unconformity boundaries
are characterized by the presence of a thin cooling crust (Fig. 4c),
with a higher content of fine-grained secondary mafic minerals
(Fig. 4g) compared with the underlying layers (Fig. 4h). Another
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Fig. 4. (a) General view of braided lava flow units divided by eruptive unconformity boundaries. The basalt is a component of the
Tamulangou Formation in Manchuria, northeast China. (b) Inner structures of the braided lava flow units. (c) Characteristics of the top vesicle
zone (upper layer) and base vesicle zone, which are separated by an aphanitic surface abundant in fine-grained secondary mafic minerals
(micrograph g, plane-polarized light; Cal, calcite; Fe, iron; P1, plagioclase; V, vesicle) compared with the lower layers (micrograph h, plane-
polarized light). (d) Interpretation of photograph c. (e) Characteristics of the top vesicle zone (lower layer), including the development of round
vesicles (Rv) and straight fissures (Sf). (f) Characteristics of the massive core zone, including the development of a small round vesicle.
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characteristic is the sudden change in pore quantities across the Their characteristics are summarized in Table 1. The boundary
interface between two lava flow units (Figs. 4c, 4d). An individual between the top vesicle zone and the massive core zone is defined
braided lava flow unit can be divided into three vesicle zones by the abrupt decrease in the abundance of vesicles. The boundary
(Fig. 4b): the top vesicle zone (which includes an upper layer, as between the massive core zone and the base vesicle zone is de-
shown in Figs. 4c and 4d, and a lower layer, as shown in Fig. 4e), the fined by the abrupt increase in the abundance of vesicles or the
massive core zone (Fig. 4f), and the base vesicle zone (Figs. 4c, 4d). change in pore shape to pipe-like or axiolitic shapes.
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Table 1. Characteristics of vesicle zones in the basalt lava flow units.

Surface
Flow unit Vesicle zone Primary pore Fissure porosity (%)
Braided lava flow units Top vesicle zones  Directional, axiolitic, and small Microfissures 20-40

(upper layer)
Top vesicle zones
(lower layer)

Base vesicle zones

Tabular lava flow units Top vesicle zones
(upper layer)

Top vesicle zones
(lower layer)

Massive core zones Few pores

Base vesicle zones

Few round pores

(diameter: 0.2-1 cm)

Round and larger than upper layer
(diameter: 0.5-2 cm)

Massive core zones Small round pores

Pipe and axiolitic, not highly directional Straight fractures 10-15

Directional, axiolitic, and small
(diameter: 0.2-1 cm)

Large round pores (diameter: 10-15 cm)

Straight fractures 8-20
Straight fractures <5
Microfissures 20-40
Straight fractures 10-30
Columnar joints and <1

straight fractures
Bedding joints <5

Tabular lava flow units

Figure 5 illustrates the characteristics of tabular lava flow units.
In the study escarpment, two tabular lava flow units (12 and 17 m
thick) were identified based on eruptive unconformity boundaries
(Figs. 5a, 5b). These units are thicker than the braided lava flow
units, but their inner structures can also be divided into three
vesicle zones (Fig. 5¢; Table 1). In the tabular lava flow units, the
upper layers of the top vesicle zones are generally similar to
braided lava flow units (Fig. 4c, 5e); however, the lower layers of
the top vesicle zones feature very large round vesicles (Fig. 5d). In
addition, the massive core zones in the tabular lava flow units are
much thicker and have lower porosities than the massive zones of
the braided lava flows (Fig. 5¢). The base vesicle zones are slightly
thicker than the base vesicle zones in the braided lava flow units,
and the tabular lava units show the development of bedding joints
(Fig. 5f). Therefore, the boundary between the top vesicle zone and
the massive core zone is defined by the sudden disappearance of
the large round pores, and the boundary between the massive
core zone and the base vesicle zone is defined by the occurrence of
bedding joints and small round pores.

Basalt lava flow units in the Songliao Basin

The outcrop studies provided essential geological data to con-
struct models regarding the distribution of vesicles in the two
types of lava flows identified in the Hailaer Basin. In the Songliao
Basin, petrophysical logs from the boreholes provided compara-
ble data, however, only in one dimension. Seismic data can be
used to identify large lava flow units and map their extent, which
is a parameter that cannot be directly measured in the outcrop. In
this section, we discuss the identification of the basalt lava flow
units in boreholes and seismic sections.

Basalt lava flow units in boreholes

Basalt lava flow units and vesicle zones within lava flows can be
identified by analyzing cores and logs (Boldreel 2006). An example
of boreholes in the Xujiaweizi graben of the Songliao Basin is
illustrated in Fig. 6. The basalt in this borehole can be divided into
12 lava flow units based on eruptive unconformity boundaries.
These boundaries can be identified by sudden changes in the resis-
tivity and acoustic curves, which are attributable to sudden changes
in porosity across the interface between any two units. The finger-
shaped gamma-ray curve in the lower gamma-ray background,
which reflects an alteration zone, can also indicate the presence of
eruptive unconformity boundaries (Huang et al. 2011). Based on the
identification of lava flow units, we were able to measure the thick-
nesses of the lava flow units. In addition, the relative changes in the
acoustic curve can help determine the boundaries between different
vesicle zones in basalt lava flow units (Fig. 6). Porosity variations and
the distribution of vesicles within flow units are reflected by the

sonic log. The top vesicle zones are characterized by high sonic tran-
sit times (Fig. 6, p1), whereas the massive core zones are character-
ized by low sonic transit times (Fig. 6, p2). Therefore, the boundary
between the top vesicle zone and the massive core zone in a lava flow
unit can be identified as the midpoint of changes (high to low) in the
acoustic curve. Because the base vesicle zones are thin and cannot be
accurately identified by logs in some lava flow units, we identified
the massive core zone and the base vesicle zone as a single entity in
the boreholes.

Basalt lava flow units identified by seismic data

Previous studies on volcanostratigraphy and volcanic seismic
reflection across the southeast Atlantic and western Australian
margins have provided a reliable method for identifying basalt
lava flows in buried basins (Planke and Eldholm 1994; Planke et al.
2000; Petersen et al. 2006, 2013). In this study, the lateral extents
of tabular lava flow units were obtained from seismic interpreta-
tions in the Songliao Basin (Fig. 7). Based on correlations with well
data, the tabular lava flow units exhibit continuous, high-amplitude,
and parallel or subparallel seismic reflection features. The braided
lava flow units are discontinuous, with low to moderate ampli-
tudes and a hummocky configuration (Fig. 7a). Based on these
characteristics, the tabular and braided lava flow units were inter-
preted as shown in Fig. 7b. This analysis revealed that a succession
of tabular lava flow units may extend to 10-20 km in the study
basin.

Vesicle distribution models

Vesicle distribution models of basalt lava flow units were
established based on an analysis of outcrop and borehole data,
including (i) conceptual geological models (Fig. 8) and (ii) vesicle
distribution as a function of thickness models (Fig. 9).

Conceptual geological models

The conceptual geological models developed in this study de-
scribe the relationships among the shapes, scales, stacking pat-
terns, and inner structures of the basalt lava flow units (Fig. 8). As
the thicknesses increase, the shapes of the basalt lava flow units
change from braided to tabular and the stacking patterns change
from intersectional to vertical (Figs. 8a (I), 8b (I)). Two typical ver-
tical sequences of braided lava flow units (Fig. 8a (II)) and tabular
lava flow units (Fig. 8b (II)) were analyzed. The top vesicle zones in
these two types of lava flow units are similar, with the exception
of the size of round pores in the lower layers of the top vesicle
zones. The massive core zones in the tabular lava flow units are
much thicker than the massive core zones in the braided lava flow
units and feature well-developed columnar joints. The base vesicle
zones in the tabular lava flow units are thicker and feature nu-
merous bedding joints.
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Fig. 5. (a) General view of tabular lava flow units divided by an eruptive unconformity boundary. The basalt is a component of the
Tamulangou Formation in Manchuria, northeast China. (b) Inner structures of the tabular lava flow units. (c) Partially enlarged photograph
displaying the top vesicle zone (upper layer), the massive core zone, and the base vesicle zone. (d) Lower layer of the top vesicle zone with
large round vesicles. (e) Upper layer of top vesicle zone with a large number of small axiolitic vesicles. (f) Base vesicle zone with bedding joints

and several round vesicles.
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As indicated by the statistics in Fig. 9a (I), the measured thick-
nesses of the braided lava flow units in the Hailaer Basin are less
than 8 m, whereas the minimum measured thickness of the tab-
ular lava flow units is 8 m. In the Songliao Basin, the thicknesses
of the basalt lava flow units range from 2 to 52 m; the majority of
the thicknesses are between 2 and 15 m (Fig. 9a (II)). The thick-
nesses of the vesicle zones in the basalt lava flow units are indi-
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cated in Table 2. We compared the thicknesses of the vesicle
zones estimated by this study with the thicknesses of the vesi-
cle zones observed in the Skye lava field (Single and Jerram
2004). The two studies were broadly comparable with respect to
this parameter.

As indicated in Fig. 9b, the thickness relationships between the
top vesicle zones and the lava flow units were established from
the outcrop and borehole data. The trends in the thicknesses of

< Published by NRC Research Press



Can. J. Earth Sci. Downloaded from www.nrcresearchpress.com by Jilin University on 07/06/16
For personal use only.

66

Can. J. Earth Sci. Vol. 53, 2016

Fig. 6. Example of basalt lava flow units in borehole D6. Based on the analysis of cores and logs, 12 lava flow units and their inner vesicle

zones were identified. p1, core with a large number of vesicles (V); p2,

core with few vesicles but several fissures (F). Refer to Fig. 3c for the

location of borehole D6. A section of borehole D6 is also employed in Fig. 7. GR(API), natural gamma ray (American Petroleum Institute units);

LLS/LLD, laterolog shallow | laterolog deep; AC, acoustic curve.
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Fig. 7. Interpretation of basalt lava flow units using borehole and seismic data in the Xujiaweizi graben of the Songliao Basin. (a) Seismic
section showing two typical configurations of basalt lava flow units; (b) interpretation of the seismic data. Seismic reflectors: T,, top
unconformity interface of the Yingcheng Formation; T, ;, base unconformity interface of the Yingcheng Formation; T, ,, base unconformity
interface of the Shahezi Formation; Ts, subrift erosional surface overlying the Permo-Carboniferous basement. Refer to Fig. 3c for the location
of the seismic section and Fig. 3a for the lithological placement of the seismic horizons.
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the top vesicle zones versus the lava flow units can be expressed as
a series of functions: (i) a linear function for thin (i.e., <2.6 and <2.8 m
from outcrop data and borehole data, respectively) lava flow units
and (ii) a logarithmical function for thicker lava flow units. This
suggests that thin lava flow units commonly consist almost en-
tirely of top vesicle zones, and the thicknesses of these top vesicle
zones increase proportionally with the thicknesses of the basalt

lava flow units within a certain range. Figure 9c illustrated that
the trends in the thickness of the massive core zone and the base
vesicle zone relative to the basalt lava flow unit thickness can be
expressed by a piecewise linear function. It can be inferred that
both the massive core zone and the base vesicle zone are absent in
thin lava flow units, whereas the thicknesses of both zones lin-
early increase with the thicknesses of the lava flow units beyond a

< Published by NRC Research Press



Can. J. Earth Sci. Downloaded from www.nrcresearchpress.com by Jilin University on 07/06/16
For personal use only.

Yietal

67

Fig. 8. Conceptual geological models of (a) the braided lava flow units and (b) the tabular lava flow units.
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certain thickness value. Because the base vesicle zone is typically
thin and stable, the thicknesses of the massive core zone and the
base vesicle zone can be approximated based on the thickness of
the massive core zone. Therefore, the massive core zone com-
prises only a small or negligible proportion of a thin unit but
constitutes a significant proportion of a thick lava flow unit.

Discussion

Distribution of reservoirs in basalt

Based on the understanding that the vesicle zone is the primary
reservoir volume in basalt (Huang et al. 2010b), our findings sug-
gest that (i) the distribution of the reservoirs follows an intersec-
tional pattern in the braided lava flow units and is more stratified
in the tabular lava flow units (as shown in Fig. 8) and (ii) the net
reservoir thickness is a result of stacking of flow units (as illus-
trated in Fig. 10). In Fig. 10, we constructed a reservoir conceptual
model to discuss the thicknesses of the reservoirs in basalt based on
the assumption that the total basalt thickness is 40 m and is com-
posed of different thicknesses of lava flow units. As the thicknesses
of the lava flow units decrease, the proportion and total thicknesses
of the reservoirs increase (Fig. 10). For example, when the basalt in
this model comprises a single one unit 40 m thick, the vesicle zone
accounted for only 16% of the total basalt. In contrast, the modeled
basalt is entirely composed of vesicles when the thickness of the
individual lava flow units is 2 m (Fig. 10). Therefore, a greater number
of reservoirs develop in basalt derived from the stratification of thin
lava flow units relative to basalt derived from thicker units. This
inference is also supported by the observed porosity data. A greater
number of high-porosity reservoirs develop in thin lava flow units
relative to thicker units (Fig. 11).

Permeability of basalt reservoirs

Olavsdéttir et al. (2015) observed very low permeability values in
the basalt flow units in the North Atlantic region. In the Songliao
Basin of northeast China, the permeability in the basalt flow units
is generally low. The value of permeability ranges from 95 to

0.004 md (1 md = 0.001 pm?), with a mean value of 0.08 md (Wang
and Chen 2015). However, the permeability limitation for the na-
ture gas reservoir is not very strict. The lower permeability limit of
an effective gas reservoir in basalt is 0.005 md in this area (Huang
2010a). Figure 12 shows that permeability generally increases with
porosity. Therefore, the vesicle zones in the basalt lava flows rep-
resent the primary effective gas reservoirs in this area.

Conclusions

(1) Conceptual geological models: The basalts in the Hailaer and
Songliao basins comprise two types of lava flows: braided lava
flows and tabular lava flows. Their inner structures can be
divided into three vesicle zones: the top vesicle zone, the
massive core zone, and the base vesicle zone.
Thickness characteristics and model applicability: The thicknesses
of the basalt lava flow units in this study range from 2 to 52 m,
with most values in the range of 2-15 m. The thicknesses of
the top vesicle zones, the massive core zones, and the base
vesicle zones range from 1to 7 m, 0 to 42.9 m, and 0 to 0.6 m,
respectively. These results are generally comparable to the
results obtained in the Skye lava field (Single and Jerram
2004), indicating that the quantitative models established in
this study are not only suitable in the study area but also
applicable to other regions.
Trends in the thicknesses of vesicle zones versus basalt lava flow units:
The trends in the thicknesses of the top vesicle zones versus the
thicknesses of the basalt lava flow units can be expressed by a
piecewise function that can be separated into a linear function
and a logarithmic function. The trends in the thicknesses of the
massive core zone and base vesicle zone versus the thicknesses
of the basalt lava flow units can be expressed by a piecewise
linear function.
(4) Petroleum reservoir significance: When basalt flows serve as petro-
leum reservoirs as in northeast China, the reservoirs primarily
develop in the upper vesicle zone in an individual lava flow unit,
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Fig. 9. Vesicle distribution as a function of thickness models: (a) thicknesses of basalt lava flow units; trends in thicknesses of (b) TVZ and
(c) MCZ + BVZ versus basalt lava flow units. N, number of units; TVZ, top vesicle zone; MCZ, massive core zone; BVZ, base vesicle zone;

R2, coefficient of determination.
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Table 2. Thicknesses of vesicle zones in the basalt lava flow units.

Thickness of vesicle zone

Outcrop at margin Boreholes in Data from
of Hailaer Basin Songliao Basin Skye lava field
minimum-maximum minimum-maximum (Single and
Lava flow unit Vesicle zone (mean) (m) (mean) (m) Jerram 2004) (m)
Braided lava flows  Top vesicle zones 1.4-4.8 (2.8) 1.4-5.6 (2.8) —
Massive core zones  0-3(0.7) 0-5.3 (1.7) 0.5-3
Base vesicle zones ~ 0-0.2 0-5.3 (1.7) <0.4
Tabular lava flows Top vesicle zones 4.3-5.1 (4.4) 2-8.5 (4.8) <3
Massive core zones  4.7-9.9 (6.9) 3.5-42.9 (9.9) >5
Base vesicle zones 0.2-0.6 3.5-42.9 (9.9) <0.5
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Fig. 10. Reservoir model developed in this study, which reveals that the number and proportion of vesicle zones exhibit an inversely
proportional relationship with the thickness of the lava flow units. Thicknesses of vesicle zones are calculated using the function indicated
in Fig. 9b (I).

Thicknesses of individual lava flow units decrease

40m 20m 10m Sm

T Pene] FINeE L
o " Py
i &
ZR% Massive | =
S = =
9 3 R
Q=
HE i
g-fs Massive < =

> oL =
3& S
= —
2 Massive E
m =}
3 1

Composed entil'rely of vesicles

Amount of vesicle zones increase

2m

[¢—— Total thickness : 40m —>3|

1 2 4 8 20
Total thicknesses of vesicle zones increase b
6.5m 10.8m 17.2m 25.6m 40m
Proportion of vesicle zones increases g
16% 27% 43% 64% 100%

Fig. 11. Porosities of basalt lava flow units with different thicknesses (from borehole data): (a) thicknesses of lava flow units <10 m; (b) thicknesses

of lava flow units >10 m. Std. dev., standard deviation.
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Fig. 12. Crossplot between the porosimeter porosity and
permeability of the basalt. Gray area represents an effective gas
reservoir. Lower permeability and porosity limits of an effective gas
reservoir in basalt are 0.005 md and 6.2%, respectively, in this area.
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and these processes are relatively independent among units.
Owing to the stacking of lava flow units, the net-gross ratio of
reservoir thickness is attributed to the stacking patterns. Res-
ervoirs with high net-gross ratios are most common in stacks
composed of stacked, thin braided lava flow units.
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